Arctic Monkeys Perform at The Boulevard Pool at The Cosmopolitan of Las Vegas

Arctic Monkeys Perform at The Boulevard Pool at The Cosmopolitan of Las Vegas

Take a look at these alternative health images:

Arctic Monkeys Perform at The Boulevard Swimming Pool at The Cosmopolitan of Las Vegas
alternative health
< img alt="alternative health"src=""width="380"/ > Image by
The Cosmopolitan of Las Vegas Picture Credit: © RD/ Kabik/ Retna Digital/ Arctic Monkeys performed at The Boulevard Pool at The Cosmopolitan of Las Vegas on September 23, 2011.

Arctic Monkeys’ incredible success is the things that dreams are made of. British alternative rock remains in the rudest health it has actually been for years, and a lot of that has been credited to the Arctic Monkeys. Their story is well-known now– after Alex Turner selected up a guitar and formed the band in 2002 with school pals Jamie Cook on guitar, Matt Helders on drums and Andy Nicholson on bass. The buzz grew organically, and by the time the band signed with Domino Records in June 2005 their signature tunes “” I Wager You Look Good On The Dancefloor”” “,”When The Sun Goes Down”” “,”Mardy Bottom” “and “” A Specific Romance” “were firm folk favorites. Audiences were stunned by the strength of their tunes, tickled by Turner’s skewed social realist lyrics, and seduced by the strength of their live performances.

For upcoming programs and events at The Cosmopolitan see the
Occasions Calendar. Find The Cosmopolitan on … Twitter: @Cosmopolitan_LV

Facebook: YouTube: Site:

Charlotte Stuart doing pain decrease treatment, Nelson, New Zealand
alternative health
< img alt="alternative health"src =""width ="380"/ > Image by Wonderlane Picture by Jaap Buijs

Grand Canyon DEIS Aerial: Mencius & Confucious Temples.

Grand Canyon DEIS Aerial: Mencius & Confucious Temples.

Check out these alternative health images:

Grand Canyon DEIS Aerial: Mencius & Confucious Temples.
alternative health
< img alt="alternative health"src=""width="380"/ > Image by Grand Canyon NPS This image is a view from one of the paths in the National Park Service (NPS) Preferred Alternative within the Draft Environmental Effect Statement (EIS), Unique Flight Rules Location in the Vicinity of Grand Canyon National Forest (GCNP), highlighting the high quality scenic views and magnificence of GCNP. This view is looking towards the west at Mencius and Confucious Forehead
The Draft EIS was established to address the required of the 1987 National Parks Overflights Act to attend to substantial repair of the natural quiet and experience of Grand Canyon National Forest and for defense of public health and safety from negative effects related to airplane overflights. Through the Draft EIS, the NPS is proposing a strategy for managing helicopter and aircraft flights over Grand Canyon. These flights presently bring more than 400,000 visitors above the canyon each year. Like all other usages in the park, air-tours play an important role in visitor pleasure. However without better, more thoughtful management air-tour flights can hinder the satisfaction of visitors on the ground. Air-tour flights also affect soundscape and other park resources of Grand Canyon’s 1,902 square miles
The Draft EIS can be evaluated online at … Comments can be submitted online at the very same Web address( the preferred technique), or sent by mail to Superintendent, Grand Canyon National Park, Attention: Office of Planning and Compliance, P.O. Box 129, Grand Canyon, Arizona 86023, or offered at one of the general public conferences. Comments will be accepted through Monday, June 20, 2011. NPS Image Pleased brand-new year and all the very best for 2015. #HNY # 2015 #Schornsteinfeger #klee #clover #luck Image by wuestenigel Stock Photos/ Fotos Download Please leave a comment and include my photo to your favourites ⭐ Thanks and greetings from Cologne, Germany Practicing tractor operation at Toluca experiment station Image by CIMMYT A farmer practices tractor operation in the field during a practical session using tractors with various carries out, part of a training course on wheat cropping hosted by CIMMYT

at its Toluca experiment station throughout 01-05 March 2010. The course became part of an agreement between CIMMYT and the Mexican Ministry of Agriculture, Livestock, Rural Development, Fisheries, and Food(SAGARPA) to work together in science and innovation transfer. Thirty-three farmer leaders with high levels of understanding and skills got involved, from different wheat producing locations in Mexico, with the expectation that they would share exactly what they learned with other farmers in their particular production locations. Toluca station superintendent Fernando Delgado performed the course, covering land preparation, planting options, weed control, effective use of planting equipment, and varied farming carries out. A second course kept in August 2010 concentrated on crop management, recognition of common plant illness, seed health, and grain quality. Picture credit: X. Fonseca/CIMMYT. For more details, see CIMMYT’s blog site story at:

Cool Day Spas images

Cool Day Spas images

Have a look at these day health spas images:

Sunrise on the Bláa Lónið (Blue Lagoon)
day spas
< img alt="spa"src =""width ="380"/ > Image by god_save_the_green Reykjanes peninsula, Iceland



Examine out nowadays medspas images:

day spas
< img alt="day health clubs"src=""width="380"/ > Image by

mark r’West is the very best’, Mexico, Puerto Vallarta, Grand Velas Riviera Nayarit Hotel & Resort Pool, Sundown
day spas
< img alt="day health spas"src=""width="380"/ > Image by WanderingtheWorld( Portfolio | Travel Blog site | Tumblr| Youtube | Contact Me
Below is an excerpt from my travel blog. Cheers.

Puerto Vallarta may have the best sunsets on the planet. Located on the west coast of Mexico, the resorts dotting the beach have the luxury of seeing extraordinary sundowns every night. The Grand Velas Resort has an enormous pool which in the evening, becomes still and shows the remarkable colors of the sun setting below the horizon. With margarita in one hand, and my video camera in the other, I remained in paradise taking photos of this sundown.

Arctic Monkeys Perform at The Boulevard Pool at The Cosmopolitan of Las Vegas

Arctic Monkeys Perform at The Boulevard Pool at The Cosmopolitan of Las Vegas

A few nice alternative health images I found:

Arctic Monkeys Perform at The Boulevard Pool at The Cosmopolitan of Las Vegas
alternative health
Image by The Cosmopolitan of Las Vegas
Photo Credit: © RD/ Kabik/ Retna Digital/

Arctic Monkeys performed at The Boulevard Pool at The Cosmopolitan of Las Vegas on September 23, 2011.

Arctic Monkeys’ incredible success is the stuff that dreams are made of. British alternative rock is in the rudest health it has been for years, and a lot of that has been credited to the Arctic Monkeys. Their story is well-known now – after Alex Turner picked up a guitar and formed the band in 2002 with school friends Jamie Cook on guitar, Matt Helders on drums and Andy Nicholson on bass. The buzz grew organically, and by the time the band signed with Domino Records in June 2005 their signature tunes "I Bet You Look Good On The Dancefloor", "When The Sun Goes Down", "Mardy Bum" and "A Certain Romance" were firm folk favorites. Audiences were stunned by the strength of their songs, tickled by Turner’s skewed social realist lyrics, and seduced by the intensity of their live performances.

For upcoming shows and events at The Cosmopolitan see the Events Calendar.

Find The Cosmopolitan on…
Twitter: @Cosmopolitan_LV

BarcelonA – AnarquistA *
alternative health
Image by Sterneck

BarcelonA – AnarquistA *
Photo-Report – March 2014

Barcelona – Arte Rebelde *
Photo-Report – March 2014

– * –

Wolfgang Sterneck:
In the Cracks of the World
Articles (german / english) :

– * –


El dia 31 de març comença el judici contra les 20 persones imputades per l’intent de bloqueig del Parlament del 15 de Juny del 2011. Aquell dia s’anaven a iniciar el tràmits per aprovar els pressupostos amb el primer paquet de retallades a Catalunya, que va propiciar el tancament d’empreses públiques, la privatització de la sanitat, les retallades al sector de la cultura, educació, etc.

La mobilització “Aturem el Parlament” va succeir dues setmanes després del brutal desallotjament de la Plaça Catalunya a mans dels antidisturbis dels Mossos d’Esquadra a les ordres del que era conseller d’Interior i ara ho és d’Empresa i Ocupació, Felip Puig. També responsable del dispositiu policial que va disparar contra l’ull d’Esther Quintana.

La criminalització per part de la premsa subvencionada pel Govern i l’escalada repressiva que va venir després (judicis contra persones que volien impedir un desnonament al Clot, nombroses detencions a les vagues generals, multes absurdes per les persones que es manifestaven o per enganxar cartells, etc), va ser i és encara, una resposta planejada per procurar frenar l’augment de la indignació i de la força de les protestes populars contra el poder polític, econòmic i altres injustícies quotidianes, com el patriarcat i el racisme.

Durant aquells dies, la gent es va organitzar arreu per construir política des del carrer, com moltes seguim fent. La política que volem és assembleària, horitzontal, autogestionada, sense representants, és del poble i per al poble, i xoca amb la política institucional que ens governa. La qual ha estat protagonista d’un espiral de corrupció i de tenir llaços, sovint familiars o personals, amb grans empreses privades que reben encàrrecs d’obres públiques i amb els peixos grossos del poder financer.

Aquell dia érem milers de persones les que vam anar a intentar aturar el Parlament, per combatre el drama de tantes vides immerses en la misèria, els acomiadaments per les retallades, els suïcidis pels desnonaments, etc. Perquè moltes d’aquestes barbàries s’aproven dins dels murs d’aquest edifici. Per aquest motiu estàvem assenyalant els culpables el 15 de Juny de 2011 i per això mateix, ho tornaríem a fer sense por, perquè legitimem la nostra actuació, i perquè si la gent del carrer, a qui ens afecta tot això, no lluitem, ningú altre ho farà per nosaltres.

Sabem i tenim clar que aquest és un judici polític, una farsa per atemorir a aquelles que decideixen plantar cara i actuar contra els responsables de tanta precarietat. De fet, ens reafirmem al comprovar que l’acció directa contra els poderosos i generar alternatives de vida els molesta, i molt. Per això, i perquè som conscients del poder que podem tenir quan ens organitzem, no ens volem doblegar davant les seves intimidacions i fem una crida a estendre la solidaritat a aquells i aquelles que pateixen la repressió i la violència quotidiana d’aquest sistema econòmic, en les seves infinitats de formes.

Convoquem manifestació el dia 29 de març a Barcelona a les 18:30 a Plaça Catalunya.


La propera vegada que agafin un helicòpter, que sigui per marxar ben lluny i no tornar a molestar!


I was at the Catalan Parliament too…
and I would do it again

On March 31st the court case against the 20 people who are charged with an attempt to block the Catalan Paliament on June 15th 2012 will begin. That day in June, the process of implementing the first round of budget cuts in Catalonia began. Cuts that involved closing public companies, the privatization of health care,as well as cuts in the area of culture, education, etc.

The mobilization “Aturem el Parlament” (“Paralize the Parliament”), took place two weeks after the brutal eviction of Plaza Catalunya (Barcelona), by the riot police Mossos d´Esquadra under the command of Felip Puig. He was the minister of the Interior at that time and is currently the minister of companies and labour. He was also responsible for the police operation that shot Esther Quintana in the eye.

The criminalization by the media (that is funded by the state) and the increase of repression which followed (court cases against people trying to prevent an eviction in the neighbourhood of el Clot, many detentions during the general strikes, absurd fees for people protesting or hanging banners with tape etc), was, and still is, a planned response to try to stop the rise of outrage and the strength of popular demostrations against economic and political power, and other daily injustices (such as patriarchy and racism).

During those days, people organized themselves all over to build and create politics from the streets, as many of us continue to do. The politics we want are based in assemblies, horizontal, self-organized, without leaders; they belong to the people and they are for the people, and clash with the institutional politics which govern us. The same institutional politics and their protagonists are creating a corruption spiral and have relationships, mostly family-based, with private companies (that receive contracts for public constructions) and with high-up people with economic power.

That day we were thousands of people trying to paralyze the Catalan Parliament in order to fight the drama of so many lives embedded in misery, the layoffs due to the cuts, the suicides due to evictions, etc. Because many of these atrocities are approved behind the walls of that building. This is the reason that we were pointing out the guilty ones that 25 of June 2012, and because of this, we would to it again without fear. Because we legitimize our action, and because if we, the people from the street -whom are the most affected-, don´t fight, nobody will do it for us.

We know that this is a political court case, a farce to scare those who decide to stand up and take action against thoseresponsibleforall this precariousness. In fact, we reaffirm our ideals and actions after proving that direct action and the creation of alternatives of life bothers them, a lot. Because of this, and because we are aware of the power we can have when we are organized, we don´t want to bow down to their intimidation. We call for a spread of solidarity for all the ones who suffer daily repression and violence within this economic system, in its infinite shapes.


The next time that they take an helicopter, it should be to go far away, and not come back to bother us.


Repression in Spain. A call for international solidarity

During the last three years Spanish society has witnessed a period of intense social protests against austerity, corruption, unemployment and so on. As in other times in history, the greater and more radicalised the protest the bigger the repression that the state organises against it. Since the general strike in September 2010, a common trend of this repression strategy is been a kind of ‘laissez faire’ in the streets but followed by ´selective´ detentions months later. Police have been literally knocking doors down of those who continuously take part in different actions and demonstrations, and consequently dozens of people have been arrested.

On June the 15th 2011, ten thousand people surrounded the Catalan parliament in Barcelona. That day the government wanted to approve a vast austerity cut in health and education, and the idea was to block politicians from getting into the building. “Inexplicably” the police did not protect some politicians, which caused direct confrontation with protesters, and of course that fact was used by the media as an example of violence against democracy. After that, people were violently dispersed, and the MPs could do their job.

On October the 4th 2011, 22 people were arrested in their homes. They have been accused of a crime against the state, using a law designed for coup leaders and that had never been used before in Spain. They now face a penalty of up to 8 years in jail, whereas some of them have been also accused of different crimes related to other demonstrations. The trial will start in March the 31st 2014 and it is expected to last four days.

There will be a national day of solidarity in Spain on March the 29th with demonstrations in several cities. So we also call for international solidarity.

You can call, email or block different Spanish embassies or institutions. Or you can do whatever you consider appropriate…

“That day we tried to block the Catalan parliament to combat the drama of many lives immersed in poverty, layoffs by cuts, suicides by evictions, etc. Because many of these atrocities are approved behind the walls of that building. We were pointing at the guilty, and because of that we would do it again without fear. We know this is a political trial, a farce to scare those who choose to stand up and take action against those responsible for such precarious living conditions. In fact, we reaffirm it to find that both direct action against the powerful and generate alternative lives bothers them a lot. For this reason, and because we understand the power that we can have as we organise ourselves, we do not want to bow to their intimidation and we make a call to extend solidarity to those suffering the daily repression and violence of this economic system, in its myriad forms”.…


Infrared HDR Palmer Park Colorado Springs
alternative health
Image by Brokentaco
HDR IR. IR converted Canon Rebel XTi. AEB +/-3 total of 12 exposures processed with Photomatix. Neutral Density Filter (ND4). F8, ISO 100.

High Dynamic Range (HDR)

High-dynamic-range imaging (HDRI) is a high dynamic range (HDR) technique used in imaging and photography to reproduce a greater dynamic range of luminosity than is possible with standard digital imaging or photographic techniques. The aim is to present a similar range of luminance to that experienced through the human visual system. The human eye, through adaptation of the iris and other methods, adjusts constantly to adapt to a broad range of luminance present in the environment. The brain continuously interprets this information so that a viewer can see in a wide range of light conditions.

HDR images can represent a greater range of luminance levels than can be achieved using more ‘traditional’ methods, such as many real-world scenes containing very bright, direct sunlight to extreme shade, or very faint nebulae. This is often achieved by capturing and then combining several different, narrower range, exposures of the same subject matter. Non-HDR cameras take photographs with a limited exposure range, referred to as LDR, resulting in the loss of detail in highlights or shadows.

The two primary types of HDR images are computer renderings and images resulting from merging multiple low-dynamic-range (LDR) or standard-dynamic-range (SDR) photographs. HDR images can also be acquired using special image sensors, such as an oversampled binary image sensor.

Due to the limitations of printing and display contrast, the extended luminosity range of an HDR image has to be compressed to be made visible. The method of rendering an HDR image to a standard monitor or printing device is called tone mapping. This method reduces the overall contrast of an HDR image to facilitate display on devices or printouts with lower dynamic range, and can be applied to produce images with preserved local contrast (or exaggerated for artistic effect).

In photography, dynamic range is measured in exposure value (EV) differences (known as stops). An increase of one EV, or ‘one stop’, represents a doubling of the amount of light. Conversely, a decrease of one EV represents a halving of the amount of light. Therefore, revealing detail in the darkest of shadows requires high exposures, while preserving detail in very bright situations requires very low exposures. Most cameras cannot provide this range of exposure values within a single exposure, due to their low dynamic range. High-dynamic-range photographs are generally achieved by capturing multiple standard-exposure images, often using exposure bracketing, and then later merging them into a single HDR image, usually within a photo manipulation program). Digital images are often encoded in a camera’s raw image format, because 8-bit JPEG encoding does not offer a wide enough range of values to allow fine transitions (and regarding HDR, later introduces undesirable effects due to lossy compression).

Any camera that allows manual exposure control can make images for HDR work, although one equipped with auto exposure bracketing (AEB) is far better suited. Images from film cameras are less suitable as they often must first be digitized, so that they can later be processed using software HDR methods.

In most imaging devices, the degree of exposure to light applied to the active element (be it film or CCD) can be altered in one of two ways: by either increasing/decreasing the size of the aperture or by increasing/decreasing the time of each exposure. Exposure variation in an HDR set is only done by altering the exposure time and not the aperture size; this is because altering the aperture size also affects the depth of field and so the resultant multiple images would be quite different, preventing their final combination into a single HDR image.

An important limitation for HDR photography is that any movement between successive images will impede or prevent success in combining them afterwards. Also, as one must create several images (often three or five and sometimes more) to obtain the desired luminance range, such a full ‘set’ of images takes extra time. HDR photographers have developed calculation methods and techniques to partially overcome these problems, but the use of a sturdy tripod is, at least, advised.

Some cameras have an auto exposure bracketing (AEB) feature with a far greater dynamic range than others, from the 3 EV of the Canon EOS 40D, to the 18 EV of the Canon EOS-1D Mark II. As the popularity of this imaging method grows, several camera manufactures are now offering built-in HDR features. For example, the Pentax K-7 DSLR has an HDR mode that captures an HDR image and outputs (only) a tone mapped JPEG file. The Canon PowerShot G12, Canon PowerShot S95 and Canon PowerShot S100 offer similar features in a smaller format.. Nikon’s approach is called ‘Active D-Lighting’ which applies exposure compensation and tone mapping to the image as it comes from the sensor, with the accent being on retaing a realistic effect . Some smartphones provide HDR modes, and most mobile platforms have apps that provide HDR picture taking.

Camera characteristics such as gamma curves, sensor resolution, noise, photometric calibration and color calibration affect resulting high-dynamic-range images.

Color film negatives and slides consist of multiple film layers that respond to light differently. As a consequence, transparent originals (especially positive slides) feature a very high dynamic range

Tone mapping
Tone mapping reduces the dynamic range, or contrast ratio, of an entire image while retaining localized contrast. Although it is a distinct operation, tone mapping is often applied to HDRI files by the same software package.

Several software applications are available on the PC, Mac and Linux platforms for producing HDR files and tone mapped images. Notable titles include

Adobe Photoshop
Aurora HDR
Dynamic Photo HDR
HDR Efex Pro
HDR PhotoStudio
Luminance HDR
Oloneo PhotoEngine
Photomatix Pro

Information stored in high-dynamic-range images typically corresponds to the physical values of luminance or radiance that can be observed in the real world. This is different from traditional digital images, which represent colors as they should appear on a monitor or a paper print. Therefore, HDR image formats are often called scene-referred, in contrast to traditional digital images, which are device-referred or output-referred. Furthermore, traditional images are usually encoded for the human visual system (maximizing the visual information stored in the fixed number of bits), which is usually called gamma encoding or gamma correction. The values stored for HDR images are often gamma compressed (power law) or logarithmically encoded, or floating-point linear values, since fixed-point linear encodings are increasingly inefficient over higher dynamic ranges.

HDR images often don’t use fixed ranges per color channel—other than traditional images—to represent many more colors over a much wider dynamic range. For that purpose, they don’t use integer values to represent the single color channels (e.g., 0-255 in an 8 bit per pixel interval for red, green and blue) but instead use a floating point representation. Common are 16-bit (half precision) or 32-bit floating point numbers to represent HDR pixels. However, when the appropriate transfer function is used, HDR pixels for some applications can be represented with a color depth that has as few as 10–12 bits for luminance and 8 bits for chrominance without introducing any visible quantization artifacts.

History of HDR photography
The idea of using several exposures to adequately reproduce a too-extreme range of luminance was pioneered as early as the 1850s by Gustave Le Gray to render seascapes showing both the sky and the sea. Such rendering was impossible at the time using standard methods, as the luminosity range was too extreme. Le Gray used one negative for the sky, and another one with a longer exposure for the sea, and combined the two into one picture in positive.

Mid 20th century
Manual tone mapping was accomplished by dodging and burning – selectively increasing or decreasing the exposure of regions of the photograph to yield better tonality reproduction. This was effective because the dynamic range of the negative is significantly higher than would be available on the finished positive paper print when that is exposed via the negative in a uniform manner. An excellent example is the photograph Schweitzer at the Lamp by W. Eugene Smith, from his 1954 photo essay A Man of Mercy on Dr. Albert Schweitzer and his humanitarian work in French Equatorial Africa. The image took 5 days to reproduce the tonal range of the scene, which ranges from a bright lamp (relative to the scene) to a dark shadow.

Ansel Adams elevated dodging and burning to an art form. Many of his famous prints were manipulated in the darkroom with these two methods. Adams wrote a comprehensive book on producing prints called The Print, which prominently features dodging and burning, in the context of his Zone System.

With the advent of color photography, tone mapping in the darkroom was no longer possible due to the specific timing needed during the developing process of color film. Photographers looked to film manufacturers to design new film stocks with improved response, or continued to shoot in black and white to use tone mapping methods.

Color film capable of directly recording high-dynamic-range images was developed by Charles Wyckoff and EG&G "in the course of a contract with the Department of the Air Force". This XR film had three emulsion layers, an upper layer having an ASA speed rating of 400, a middle layer with an intermediate rating, and a lower layer with an ASA rating of 0.004. The film was processed in a manner similar to color films, and each layer produced a different color. The dynamic range of this extended range film has been estimated as 1:108. It has been used to photograph nuclear explosions, for astronomical photography, for spectrographic research, and for medical imaging. Wyckoff’s detailed pictures of nuclear explosions appeared on the cover of Life magazine in the mid-1950s.

Late 20th century
Georges Cornuéjols and licensees of his patents (Brdi, Hymatom) introduced the principle of HDR video image, in 1986, by interposing a matricial LCD screen in front of the camera’s image sensor, increasing the sensors dynamic by five stops. The concept of neighborhood tone mapping was applied to video cameras by a group from the Technion in Israel led by Dr. Oliver Hilsenrath and Prof. Y.Y.Zeevi who filed for a patent on this concept in 1988.

In February and April 1990, Georges Cornuéjols introduced the first real-time HDR camera that combined two images captured by a sensor3435 or simultaneously3637 by two sensors of the camera. This process is known as bracketing used for a video stream.

In 1991, the first commercial video camera was introduced that performed real-time capturing of multiple images with different exposures, and producing an HDR video image, by Hymatom, licensee of Georges Cornuéjols.

Also in 1991, Georges Cornuéjols introduced the HDR+ image principle by non-linear accumulation of images to increase the sensitivity of the camera: for low-light environments, several successive images are accumulated, thus increasing the signal to noise ratio.

In 1993, another commercial medical camera producing an HDR video image, by the Technion.

Modern HDR imaging uses a completely different approach, based on making a high-dynamic-range luminance or light map using only global image operations (across the entire image), and then tone mapping the result. Global HDR was first introduced in 19931 resulting in a mathematical theory of differently exposed pictures of the same subject matter that was published in 1995 by Steve Mann and Rosalind Picard.

On October 28, 1998, Ben Sarao created one of the first nighttime HDR+G (High Dynamic Range + Graphic image)of STS-95 on the launch pad at NASA’s Kennedy Space Center. It consisted of four film images of the shuttle at night that were digitally composited with additional digital graphic elements. The image was first exhibited at NASA Headquarters Great Hall, Washington DC in 1999 and then published in Hasselblad Forum, Issue 3 1993, Volume 35 ISSN 0282-5449.

The advent of consumer digital cameras produced a new demand for HDR imaging to improve the light response of digital camera sensors, which had a much smaller dynamic range than film. Steve Mann developed and patented the global-HDR method for producing digital images having extended dynamic range at the MIT Media Laboratory. Mann’s method involved a two-step procedure: (1) generate one floating point image array by global-only image operations (operations that affect all pixels identically, without regard to their local neighborhoods); and then (2) convert this image array, using local neighborhood processing (tone-remapping, etc.), into an HDR image. The image array generated by the first step of Mann’s process is called a lightspace image, lightspace picture, or radiance map. Another benefit of global-HDR imaging is that it provides access to the intermediate light or radiance map, which has been used for computer vision, and other image processing operations.

21st century
In 2005, Adobe Systems introduced several new features in Photoshop CS2 including Merge to HDR, 32 bit floating point image support, and HDR tone mapping.

On June 30, 2016, Microsoft added support for the digital compositing of HDR images to Windows 10 using the Universal Windows Platform.

HDR sensors
Modern CMOS image sensors can often capture a high dynamic range from a single exposure. The wide dynamic range of the captured image is non-linearly compressed into a smaller dynamic range electronic representation. However, with proper processing, the information from a single exposure can be used to create an HDR image.

Such HDR imaging is used in extreme dynamic range applications like welding or automotive work. Some other cameras designed for use in security applications can automatically provide two or more images for each frame, with changing exposure. For example, a sensor for 30fps video will give out 60fps with the odd frames at a short exposure time and the even frames at a longer exposure time. Some of the sensor may even combine the two images on-chip so that a wider dynamic range without in-pixel compression is directly available to the user for display or processing.

Infrared Photography

In infrared photography, the film or image sensor used is sensitive to infrared light. The part of the spectrum used is referred to as near-infrared to distinguish it from far-infrared, which is the domain of thermal imaging. Wavelengths used for photography range from about 700 nm to about 900 nm. Film is usually sensitive to visible light too, so an infrared-passing filter is used; this lets infrared (IR) light pass through to the camera, but blocks all or most of the visible light spectrum (the filter thus looks black or deep red). ("Infrared filter" may refer either to this type of filter or to one that blocks infrared but passes other wavelengths.)

When these filters are used together with infrared-sensitive film or sensors, "in-camera effects" can be obtained; false-color or black-and-white images with a dreamlike or sometimes lurid appearance known as the "Wood Effect," an effect mainly caused by foliage (such as tree leaves and grass) strongly reflecting in the same way visible light is reflected from snow. There is a small contribution from chlorophyll fluorescence, but this is marginal and is not the real cause of the brightness seen in infrared photographs. The effect is named after the infrared photography pioneer Robert W. Wood, and not after the material wood, which does not strongly reflect infrared.

The other attributes of infrared photographs include very dark skies and penetration of atmospheric haze, caused by reduced Rayleigh scattering and Mie scattering, respectively, compared to visible light. The dark skies, in turn, result in less infrared light in shadows and dark reflections of those skies from water, and clouds will stand out strongly. These wavelengths also penetrate a few millimeters into skin and give a milky look to portraits, although eyes often look black.

Until the early 20th century, infrared photography was not possible because silver halide emulsions are not sensitive to longer wavelengths than that of blue light (and to a lesser extent, green light) without the addition of a dye to act as a color sensitizer. The first infrared photographs (as distinct from spectrographs) to be published appeared in the February 1910 edition of The Century Magazine and in the October 1910 edition of the Royal Photographic Society Journal to illustrate papers by Robert W. Wood, who discovered the unusual effects that now bear his name. The RPS co-ordinated events to celebrate the centenary of this event in 2010. Wood’s photographs were taken on experimental film that required very long exposures; thus, most of his work focused on landscapes. A further set of infrared landscapes taken by Wood in Italy in 1911 used plates provided for him by CEK Mees at Wratten & Wainwright. Mees also took a few infrared photographs in Portugal in 1910, which are now in the Kodak archives.

Infrared-sensitive photographic plates were developed in the United States during World War I for spectroscopic analysis, and infrared sensitizing dyes were investigated for improved haze penetration in aerial photography. After 1930, new emulsions from Kodak and other manufacturers became useful to infrared astronomy.

Infrared photography became popular with photography enthusiasts in the 1930s when suitable film was introduced commercially. The Times regularly published landscape and aerial photographs taken by their staff photographers using Ilford infrared film. By 1937 33 kinds of infrared film were available from five manufacturers including Agfa, Kodak and Ilford. Infrared movie film was also available and was used to create day-for-night effects in motion pictures, a notable example being the pseudo-night aerial sequences in the James Cagney/Bette Davis movie The Bride Came COD.

False-color infrared photography became widely practiced with the introduction of Kodak Ektachrome Infrared Aero Film and Ektachrome Infrared EIR. The first version of this, known as Kodacolor Aero-Reversal-Film, was developed by Clark and others at the Kodak for camouflage detection in the 1940s. The film became more widely available in 35mm form in the 1960s but KODAK AEROCHROME III Infrared Film 1443 has been discontinued.

Infrared photography became popular with a number of 1960s recording artists, because of the unusual results; Jimi Hendrix, Donovan, Frank and a slow shutter speed without focus compensation, however wider apertures like f/2.0 can produce sharp photos only if the lens is meticulously refocused to the infrared index mark, and only if this index mark is the correct one for the filter and film in use. However, it should be noted that diffraction effects inside a camera are greater at infrared wavelengths so that stopping down the lens too far may actually reduce sharpness.

Most apochromatic (‘APO’) lenses do not have an Infrared index mark and do not need to be refocused for the infrared spectrum because they are already optically corrected into the near-infrared spectrum. Catadioptric lenses do not often require this adjustment because their mirror containing elements do not suffer from chromatic aberration and so the overall aberration is comparably less. Catadioptric lenses do, of course, still contain lenses, and these lenses do still have a dispersive property.

Infrared black-and-white films require special development times but development is usually achieved with standard black-and-white film developers and chemicals (like D-76). Kodak HIE film has a polyester film base that is very stable but extremely easy to scratch, therefore special care must be used in the handling of Kodak HIE throughout the development and printing/scanning process to avoid damage to the film. The Kodak HIE film was sensitive to 900 nm.

As of November 2, 2007, "KODAK is preannouncing the discontinuance" of HIE Infrared 35 mm film stating the reasons that, "Demand for these products has been declining significantly in recent years, and it is no longer practical to continue to manufacture given the low volume, the age of the product formulations and the complexity of the processes involved." At the time of this notice, HIE Infrared 135-36 was available at a street price of around .00 a roll at US mail order outlets.

Arguably the greatest obstacle to infrared film photography has been the increasing difficulty of obtaining infrared-sensitive film. However, despite the discontinuance of HIE, other newer infrared sensitive emulsions from EFKE, ROLLEI, and ILFORD are still available, but these formulations have differing sensitivity and specifications from the venerable KODAK HIE that has been around for at least two decades. Some of these infrared films are available in 120 and larger formats as well as 35 mm, which adds flexibility to their application. With the discontinuance of Kodak HIE, Efke’s IR820 film has become the only IR film on the marketneeds update with good sensitivity beyond 750 nm, the Rollei film does extend beyond 750 nm but IR sensitivity falls off very rapidly.

Color infrared transparency films have three sensitized layers that, because of the way the dyes are coupled to these layers, reproduce infrared as red, red as green, and green as blue. All three layers are sensitive to blue so the film must be used with a yellow filter, since this will block blue light but allow the remaining colors to reach the film. The health of foliage can be determined from the relative strengths of green and infrared light reflected; this shows in color infrared as a shift from red (healthy) towards magenta (unhealthy). Early color infrared films were developed in the older E-4 process, but Kodak later manufactured a color transparency film that could be developed in standard E-6 chemistry, although more accurate results were obtained by developing using the AR-5 process. In general, color infrared does not need to be refocused to the infrared index mark on the lens.

In 2007 Kodak announced that production of the 35 mm version of their color infrared film (Ektachrome Professional Infrared/EIR) would cease as there was insufficient demand. Since 2011, all formats of color infrared film have been discontinued. Specifically, Aerochrome 1443 and SO-734.

There is no currently available digital camera that will produce the same results as Kodak color infrared film although the equivalent images can be produced by taking two exposures, one infrared and the other full-color, and combining in post-production. The color images produced by digital still cameras using infrared-pass filters are not equivalent to those produced on color infrared film. The colors result from varying amounts of infrared passing through the color filters on the photo sites, further amended by the Bayer filtering. While this makes such images unsuitable for the kind of applications for which the film was used, such as remote sensing of plant health, the resulting color tonality has proved popular artistically.

Color digital infrared, as part of full spectrum photography is gaining popularity. The ease of creating a softly colored photo with infrared characteristics has found interest among hobbyists and professionals.

In 2008, Los Angeles photographer, Dean Bennici started cutting and hand rolling Aerochrome color Infrared film. All Aerochrome medium and large format which exists today came directly from his lab. The trend in infrared photography continues to gain momentum with the success of photographer Richard Mosse and multiple users all around the world.

Digital camera sensors are inherently sensitive to infrared light, which would interfere with the normal photography by confusing the autofocus calculations or softening the image (because infrared light is focused differently from visible light), or oversaturating the red channel. Also, some clothing is transparent in the infrared, leading to unintended (at least to the manufacturer) uses of video cameras. Thus, to improve image quality and protect privacy, many digital cameras employ infrared blockers. Depending on the subject matter, infrared photography may not be practical with these cameras because the exposure times become overly long, often in the range of 30 seconds, creating noise and motion blur in the final image. However, for some subject matter the long exposure does not matter or the motion blur effects actually add to the image. Some lenses will also show a ‘hot spot’ in the centre of the image as their coatings are optimised for visible light and not for IR.

An alternative method of DSLR infrared photography is to remove the infrared blocker in front of the sensor and replace it with a filter that removes visible light. This filter is behind the mirror, so the camera can be used normally – handheld, normal shutter speeds, normal composition through the viewfinder, and focus, all work like a normal camera. Metering works but is not always accurate because of the difference between visible and infrared refraction. When the IR blocker is removed, many lenses which did display a hotspot cease to do so, and become perfectly usable for infrared photography. Additionally, because the red, green and blue micro-filters remain and have transmissions not only in their respective color but also in the infrared, enhanced infrared color may be recorded.

Since the Bayer filters in most digital cameras absorb a significant fraction of the infrared light, these cameras are sometimes not very sensitive as infrared cameras and can sometimes produce false colors in the images. An alternative approach is to use a Foveon X3 sensor, which does not have absorptive filters on it; the Sigma SD10 DSLR has a removable IR blocking filter and dust protector, which can be simply omitted or replaced by a deep red or complete visible light blocking filter. The Sigma SD14 has an IR/UV blocking filter that can be removed/installed without tools. The result is a very sensitive digital IR camera.

While it is common to use a filter that blocks almost all visible light, the wavelength sensitivity of a digital camera without internal infrared blocking is such that a variety of artistic results can be obtained with more conventional filtration. For example, a very dark neutral density filter can be used (such as the Hoya ND400) which passes a very small amount of visible light compared to the near-infrared it allows through. Wider filtration permits an SLR viewfinder to be used and also passes more varied color information to the sensor without necessarily reducing the Wood effect. Wider filtration is however likely to reduce other infrared artefacts such as haze penetration and darkened skies. This technique mirrors the methods used by infrared film photographers where black-and-white infrared film was often used with a deep red filter rather than a visually opaque one.

Another common technique with near-infrared filters is to swap blue and red channels in software (e.g. photoshop) which retains much of the characteristic ‘white foliage’ while rendering skies a glorious blue.

Several Sony cameras had the so-called Night Shot facility, which physically moves the blocking filter away from the light path, which makes the cameras very sensitive to infrared light. Soon after its development, this facility was ‘restricted’ by Sony to make it difficult for people to take photos that saw through clothing. To do this the iris is opened fully and exposure duration is limited to long times of more than 1/30 second or so. It is possible to shoot infrared but neutral density filters must be used to reduce the camera’s sensitivity and the long exposure times mean that care must be taken to avoid camera-shake artifacts.

Fuji have produced digital cameras for use in forensic criminology and medicine which have no infrared blocking filter. The first camera, designated the S3 PRO UVIR, also had extended ultraviolet sensitivity (digital sensors are usually less sensitive to UV than to IR). Optimum UV sensitivity requires special lenses, but ordinary lenses usually work well for IR. In 2007, FujiFilm introduced a new version of this camera, based on the Nikon D200/ FujiFilm S5 called the IS Pro, also able to take Nikon lenses. Fuji had earlier introduced a non-SLR infrared camera, the IS-1, a modified version of the FujiFilm FinePix S9100. Unlike the S3 PRO UVIR, the IS-1 does not offer UV sensitivity. FujiFilm restricts the sale of these cameras to professional users with their EULA specifically prohibiting "unethical photographic conduct".

Phase One digital camera backs can be ordered in an infrared modified form.

Remote sensing and thermographic cameras are sensitive to longer wavelengths of infrared (see Infrared spectrum#Commonly used sub-division scheme). They may be multispectral and use a variety of technologies which may not resemble common camera or filter designs. Cameras sensitive to longer infrared wavelengths including those used in infrared astronomy often require cooling to reduce thermally induced dark currents in the sensor (see Dark current (physics)). Lower cost uncooled thermographic digital cameras operate in the Long Wave infrared band (see Thermographic camera#Uncooled infrared detectors). These cameras are generally used for building inspection or preventative maintenance but can be used for artistic pursuits as well.

Cool Day Spas images

Cool Day Spas images

Some cool day medspas images:

Day medspa 2393
day spas
< img alt=" spa" src="" width=" 380"/ > Image by< a href="" > East Side Tabernacle

Revitalizing Waters Day Health Club Photo Shoot

Side Lily
day spas
< img alt=" spa" src="" width=" 380"/ > Image by< a href="" >
fs999 Pentax K-5 – 400 ISO – Pentax DA 40mm F2.8 XS
Kenko Pz-AF UniPlus Tube 25

Topaz Adjust 5

Le St Barnabé Hôtel & Medical Spa Murbach – Haut-Rhin – Alsace – France

day spas
< img alt="spa"src =""width ="380"/ > Image by mark r